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Abstract—Due to communication constraints and intermittent
client availability in federated learning, only a subset of clients
can participate in each training round. While most prior works
assume uniform and unbiased client selection, recent work on
biased client selection [1] has shown that selecting clients with
higher local losses can improve error convergence speed. However,
previously proposed biased selection strategies either require
additional communication cost for evaluating the exact local loss
or utilize stale local loss, which can even make the model diverge.
In this paper, we present a bandit-based communication-efficient
client selection strategy UCB-CS that achieves faster convergence
with lower communication overhead. We also demonstrate how
client selection can be used to improve fairness.

Index Terms—distributed optimization, federated learning,
fairness, client selection, multi-armed bandits

I. INTRODUCTION

With increasing applications moving from data-center based
training to edge-device training, federated learning (FL) [2],
[3] has been spotlighted as one of the powerful distributed opti-
mization methods for on-device learning. FL enables a massive
distributed network of devices (clients) to participate in the
training process without data-sharing. In each communication
round, a subset of selected clients perform local model training
and send their updated models to a central aggregating server.
Most previous works use unbiased client selection and model
aggregation. However, due to the inherent data heterogeneity
across clients, judicious use of bias in client selection presents
an untapped opportunity to improve error convergence.

Recent works have [1], [4] shown that biasing client selection
in FL towards clients with higher local loss achieves faster
convergence compared to unbiased client selection. However
the client selection strategies proposed in previous works either
require the server to additionally communicate with clients to
retrieve the accurate local loss values or use stale loss values
received from selected clients from previous communication
rounds. Communication is expensive in FL, and furthermore,
we show that using stale loss values can lead to slower error
convergence or even divergence.

In this paper, we propose a bandit-based client selection
strategy UCB-CS that is communication-efficient and use the
observed clients‘ local loss values more appropriately instead
of using stale values. Moreover, we show that biased client
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selection can promote fairness, the uniformity of local loss
performance across clients. To the best of our knowledge,
there has been no work that proposes or evaluates biased client
selection strategies in the context of fairness.

II. PROBLEM FORMULATION

A. Federated Learning with Partial Device Participation

The general FL framework FedAvg [2] aims to find the
parameter vector w that minimizes the following objective:

F (w) =
1∑K

k=1Dk

K∑
k=1

∑
ξ∈Bk

f(w, ξ) =

K∑
k=1

pkFk(w) (1)

with total K clients, where client k has a local dataset Bk
consisting |Bk| = Dk data samples. The term f(w, ξ) is the
composite loss function for sample ξ and parameter vector
w. The term pk = Dk/

∑K
k=1Dk is the fraction of data at

the k-th client, and Fk(w) = 1
|Bk|

∑
ξ∈Bk

f(w, ξ) is the local
objective function of client k.

A central aggregating server optimizes the model parameter
w by selecting a subset of m = CK clients for some fraction
0 < C < 1 in each communication round (partial-device
participation). Each selected client performs τ iterations of
local SGD [5], [6], [7] and sends its locally updated model
back to the server. Then, the server updates the global model
using the local models and broadcasts the global model to a new
set of active clients. Formally, we index the local SGD iterations
with t ≥ 0. The set of active clients at iteration t is denoted by
S(t). Since active clients performs τ steps of local update, the
active set S(t) also remains constant for every τ iterations. That
is, if (t+1) mod τ = 0, then S(t+1) = S(t+2) = · · · = S(t+τ).
Accordingly, the update rule of FedAvg is as follows:

w
(t+1)
k ={
1
m

∑
j∈S(t)

(
w

(t)
j − ηtgj(w

(t)
j , ξ

(t)
j )
)
, w(t+1) else

(2)

where w
(t+1)
k is the local model of client k at iteration t, ηt is

the learning rate, and gk(w
(t)
k , ξ

(t)
k ) = 1

b

∑
ξ∈ξ(t)k

∇f(w(t)
k , ξ)

is the stochastic gradient over mini-batch ξ(t)k of size b that is
randomly sampled from client k’s local dataset Bk. Moreover,
w(t+1) is the global model at the server.
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B. Biased Client Selection for Faster Convergence

We define a client selection strategy π that maps the
parameter vector w to a specific set of clients S(π,w). The
baseline unbiased client selection strategy used in FedAvg [2]
chooses clients in proportion to pk, denoted as πrand. It has been
noted in [1], [4] that selecting clients with higher local loss
at each communication round leads to faster convergence but
incurs an error floor. To attain faster convergence than πrand,
[1] proposes the power-of-d client selection scheme πpow-d.
Under the πpow-d scheme, the central server with d > m clients
obtains their local loss Fk(w) for the current global model w.
After doing so, the πpow-d selects the m clients with largest
local loss values in the next communication round. It has been
seen in [1] that this scheme performs much better than the
πrand scheme for a variety of ML tasks. A drawback of πpow-d
scheme is that it requires additional communication, as the
central server is required to poll d clients before selecting
clients for the next communication round.

To reduce this additional communication, it is desirable
to have a proxy for the local loss Fk(w) of each client k
available at the center. Motivated by this, [1] proposes the
πrpow-d scheme, where the local loss Fk(w) is approximated
by the local loss of the client when it was last selected in the
client selection procedure. However, this approximation can be
misleading at times as the client loss evaluation can be noisy
and stale. Due to these reasons, it was observed that in certain
cases the πrpow-d scheme does not have desirable convergence
(See Figure 1). In this paper, we design a communication-
efficient client selection strategy that enjoys faster convergence
performance and robustness to the error floor compared to
previously proposed client selection strategies.

C. Fairness in Client Selection

Fairness in FL has been studied only recently in the
literature [8], [9], with the main goal of capturing the local
accuracy discrepancies across clients for a trained global model.
According to (1), clients with larger pk will intuitively yield
lower local loss performance, and vice versa. However, if clients
with small pk perform significantly worse than the other clients,
this can be unfair [8], [9]. Henceforth, we define client fairness
as the extent of identical local performance across clients for
a single global model. We show that client fairness can be
improved by incorporating the estimated local loss values
and client’s selected frequency to the client selection scheme.
Gaining perspective from wireless resource allocation [10],
[11], [12], we measure fairness by the Jain’s index [10]
J(w), 1/K ≤ J(w) ≤ 1 where 1 is when all clients have the
same performance. Fairness metric J(w) is defined as:

J(w) =
1

K

 K∑
k=1

(
Fk(w)∑K
i=1 Fi(w)

)2
−1 (3)

With this definition, we show that our proposed UCB-CS gains
both fairness and convergence speed compared to the unbiased
and previously proposed biased client selection strategies.

III. CLIENT SELECTION WITH DISCOUNTED UCB

In order to achieve faster convergence with low error floor,
it is important to select clients with larger local loss (i.e.,
exploitation) as that leads to faster convergence [1]. It is also
important to ensure diversity (i.e., exploration) in selection to
achieve a lower error floor. Motivated by the fact that there is a
exploration-exploitation trade-off, we propose the use of Multi-
Armed Bandit (MAB) algorithms [13] for the problem of client-
selection in FL. Since the local loss values of individual clients
are non-stationary during training we make use of discounted
MAB algorithms proposed in [14]. We modify the discounted
UCB algorithm [14] to balance the exploration-exploitation
trade-off in the client selection problem. We view the clients
as the arms in the MAB problem and compute discounted
cumulative local loss values of each client, Lt(γ, k), and a
discounted count of the number of times each client has been
sampled, Nt(γ, k), till communication round t.

Using these, we define the discounted UCB index for
each client k ∈ [K] at communication round t, and select
the m clients with largest discounted UCB indices. With
T = {τ, 2τ, 3τ, ..., bt/τcτ} which are the set of time
indices for the communication rounds until t, the discounted
UCB indices At(γ, k) are formally defined as

At(γ, k) = pk(Lt(γ, k)/Nt(γ, k)︸ ︷︷ ︸
exploitation

+Ut(γ, k)︸ ︷︷ ︸
exploration

) (4)

where,

Lt(γ, k) =
∑
t′∈T

γt−t
′
1{k∈S(t′−1)}

1

τ

t′∑
l=t′−τ+1

∑
ξ∈ξ(l)k

f(w
(l)
k , ξ)

b

(5)

Nt(γ, k) =
∑
t′∈T

γt−t
′
1{k∈S(t′−1)} (6)

Ut(γ, k) =
√
2σ2

t log Tt(γ)/Nt(γ, k), Tt(γ) =
∑
t′∈T

γt−t
′

(7)

Here, 0 ≤ γ ≤ 1 is a hyper-parameter that impacts the
importance given to stale values. When γ = 1, all past local
loss samples contribute equally in the calculation of Lt(γ, k)
and when γ = 0 only the latest local loss is used to estimate
Lt(γ, k). For 0 < γ < 1, less weight is put upon stale values
of local loss for the calculation of Lt(γ, k). By doing so,
we compute the estimate for local loss of client in a robust
way to escape the noise in the latest evaluation and discount
the stale values computed in the past. The exploration term
Ut(γ, k) gets larger by a factor of σt especially for clients
that have not been selected recently regardless of their local
loss values. This forces UCB-CS to explore other clients that
may have relatively smaller exploitation value. This not only
can pull the algorithm away from generating the error floor
by just selecting clients with estimated larger local loss, but
also promotes fairness in terms of the number of times the
client is explored. The parameter σt is the maximum standard
deviation in the local loss computed over the latest update
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(c) m = 3

Fig. 1: Global loss for logistic regression on the synthetic dataset, Synthetic(1,1), with πrand, πpow-d, πrpow-d, and πucb-cs for
d = 2m, γ = 0.7 where K = 30, m ∈ {1, 2, 3}.

of clients. Note that we multiply the dataset size ratio with
the discounted UCB index, as we also want to sample clients
proportional to their datasize for fast convergence and lower
error floor. Details of UCB-CS are presented in Algorithm 1.

Algorithm 1 Pseudo code for UCB-CS

1: Input: m, γ, pk for k ∈ [K]
2: Output: S(t)
3: Initialize: empty sets S(t) and list A of length K
4: Global server do
5: Receive 1

τb

∑t
l=t−τ+1

∑
ξ∈ξ(l)k

f(w
(l)
k , ξ) from clients

k ∈ S(t−1) and calculate At(γ, k) as (4)
6: Update A[k] = At(γ, k)
7: Get S(t) = {m clients with largest values in A (break

ties randomly)}
8: Discount elements in A by A = γA
9: return S(t)

IV. EXPERIMENT RESULTS

We evaluate the proposed UCB-CS with logistic re-
gression on a heterogeneous synthetic federated dataset,
Synthetic(1,1) [15], and DNN trained on a non-iid parti-
tioned FMNIST dataset [16]. For logistic regression, we assume
in K = 30 where the local dataset sizes follow the power law
distribution. We set b = 50, τ = 30, and η = 0.05, where η
is decayed to η/2 every 300 and 600 rounds. For DNN, we
train a deep multi-layer perceptron network with two hidden
layers on the FMNIST dataset. We construct the heterogeneous
data partition amongst clients using the Dirichlet distribution
DirK(α) [17], where α determines the degree of the data
heterogeneity across clients. Smaller α indicates larger data
heterogeneity. For all experiments we use b = 64, τ = 100,
and η = 0.005, where η is decayed by half for round 150. All
experiments are conducted with clusters equipped with one
NVIDIA TitanX GPU. The machines communicate amongst
each other through Ethernet. The algorithms are implemented
by PyTorch. For all results, the hyper-parameters d and γ are
tuned for the best performance via grid search.

The training loss performance for the synthetic dataset
simulation is presented in Fig. 1. The UCB-CS algorithm,
πucb-cs, converges even faster than πpow-d without any error
floor, and performs significantly better than πrand and πrpow-d.
The πrpow-d selection policy performs worse than πrand, showing
that using stale local losses for biased client selection can make
the performance worse than the unbiased selection strategies.
Additionally, in Table I, we show that the biased client selection
strategies achieve notable higher fairness than the random
selection strategy. While πpow-d is able to achieve higher fairness
than πucb-cs, πucb-cs shows a significant improvement in fairness
even with low communication cost and robustness to the error
floor in the training curve. Hence we show that πucb-cs is
efficient in the three important factors in FL: loss performance,
fairness, and communication-efficiency.

To dive deeper into the difference between πpow-d and πucb-cs,
in Fig, 2 we present the local loss distribution across the
clients at the end of training for the simulation in Fig. 1(a). We
show that both πucb-cs and πpow-d is able to improve the worst
performing client’s local loss performance for πrand. While
πpow-d is able to keep most of the clients in the approximately
average range of performance of the local loss, πucb-cs allows
most of the clients to perform with the lowest local loss,
skewing the local loss distribution across clients towards lower
loss values. Hence from Fig. 2 we can see that πpow-d is
valuing fairness over performance, whereas πucb-cs is valuing
performance slightly over fairness.

In Fig. 3, the test accuracy and training loss for image
classification on the FMNIST dataset via DNN are presented.
For less data heterogeneity (α = 2), both πrpow-d and πucb-cs
perform similarly with higher test accuracy and lower training
loss than πrand. However, for larger data heterogeneity (α =
0.3), πrpow-d performs worse than πucb-cs, showing that with
large τ the estimated local loss values that πrpow-d use becomes
very stale, worsening the performance in the presence of large
data heterogeneity. On the other hand, πucb-cs and πpow-d have
similar empirical performance, which shows that πucb-cs’s use
of discounted and accumulated local losses give an accurate
representation of the client’s actual local loss value.



TABLE I: Fairness values J(w(T )), where T is the last
communication round, for the scenarios in Fig. 1.

m = 1 m = 2 m = 3

πrand 0.43 0.29 0.66
πpow-d 0.75 0.89 0.91
πucb-cs 0.61 0.61 0.65
πrpow-d 0.32 0.52 0.39
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Fig. 2: Histogram for the client‘s individual loss performance
after end of training for simulations presented in Fig. 1(a).

(a) α = 2

(b) α = 0.3

Fig. 3: Test accuracy and training loss for πrand, πpow-d, πrpow-d,
and πucb-cs for K = 100, C = 0.03 on the FMNIST dataset
with mini-batch size b = 64 and τ = 100.

V. CONCLUDING REMARKS

In this paper, we propose a bandit-based communication-
efficient client selection strategy, UCB-CS. It tackles the
problem of communication-efficiency, noisy-stale estimates
of local loss values, and error floor prevalent in biased client
selection strategies from previous literature [1], [4]. We discover
that UCB-CS, with no additional communication compared to
πrand, is robust to the error floor and gains convergence speed
while mitigating the problem of staleness of observed local loss

values. Moreover we show that UCB-CS increases fairness, the
uniformity of performance across different clients, compared
to other known communication-efficient biased client selection
strategies. Throughout this work, we assume that local losses
corresponding to a model w for each clients are independent
of each other. However, in reality, similar clients might have
similar local losses. We aim to use correlated multi-armed
bandit algorithms [18], [19] in such setting to further improve
the performance of UCB-CS for future work.
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[19] S. Gupta, G. Joshi, and O. Yağan, “Correlated multi-armed bandits
with a latent random source,” ArXiv, Aug. 2018. [Online]. Available:
https://arxiv.org/abs/1808.05904

http://arxiv.org/abs/2010.01243
http://arxiv.org/abs/2010.01243
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1808.07576
https://arxiv.org/abs/cs/9809099
http://arxiv.org/abs/0805.3415
https://arxiv.org/abs/1808.05904

	I Introduction
	II Problem Formulation
	II-A Federated Learning with Partial Device Participation
	II-B Biased Client Selection for Faster Convergence
	II-C Fairness in Client Selection

	III Client Selection with discounted UCB
	IV Experiment Results
	V Concluding Remarks
	References

